CSCI 210: Computer Architecture
Lecture 29: Pipelining

Stephen Checkoway
Slides from Cynthia Taylor

CS History: Berkeley RISC

Developed by David Patterson at UC Berkeley between 1980 and 1984

Patterson took a sabbatical to improve DEC’s Complex Instruction Set, and
instead decided the whole system was bad

A 1978 Andrew Tannenbaum paper had shown a 10,000 line complex
program could be implemented using a simplified ISA with an 8-bit fixed
opcode

— And that 81% of constants were 0, 1 or 2!
— IBM internally discovered similar results

First RISC chip came out in 1981
RISC V is currently in active development as an open-source ISA

Pipelined Datapath

A

Add

Address

Instruction
memory

IF/ID

ID/EX

EX/MEM

Sign-
extend

y

Shift
left 2
c
-% o | Read Read
c " | register 1 eal >
E 9 data 1
= Read
I register 2
Registers po.q
o | Write data 2 > id
" | register
Write
data

Address

Write
data

Data
memory

Read
data

MEM/WB

IF for sw StO, 4(St1)

Iw
I

Instruction fetch

L

Data

memory

Read
data

IF/ID ID/EX EX/MEM
> Add > >
. Add e’:dﬁ
Shift resu
left 2
c
Address '% »-| Aead
2 " | register 1 Read >
,g 9 data 1 ——
= Read
Instruction . register %e isters > B il
meriil >) g Read - o
Write data 2 o
register
. Write
data
16 i
y . | Sign- 32 I
v | extend

StO is register 8, St1 is register 9
StO0 holds 5

St1 holds 0x4810CABO
0x4810CABO holds 12

A J

1D

for sw StO, 4(St1)

lw
I I

! Instruction decode

MEM/WB

StO is register 8, St1 is register 9

St0 holds 5

Stl holds 0x4810CABO

0x4810CABO holds 12

Data
memory

Read
data

IF/ID ID/EX EX/MEM
Add > > .
4 = Add Adlc:
Shift resu
left 2
c
Address % Read
=4 register 1 Read >
@ data 1
=, Read -
Instruction o register %e .
memory) gisters poag - > L@—| Address
Write data 2 -
register
Write
| data
- o | Write
- " | data
16 Sign- 32
| extend

EX

for sw St0, 4(St1)

i |

Execution

StO is register 8, St1 is register 9
StO0 holds 5

St1 holds 0x4810CABO
0x4810CABO holds 12

IF/ID ID/EX
Add >
4
0
M
u PC | Address c Read Read
X 2 register 1 ea >
—\ g data 1
= Read
Instruction o~ < register 2
> i § .
memory | write ReglsiersRead
register data 2
Write
data
"? [Sign- 32
v | extend

EX/MEM MEM/WB
> =
Read
> Address data B
Data
memory
| Write
~ | data

“xc2°

MEM for sw StO, 4(St1)

Add
4 —
= i
M
u PC Address
b
1
Instruction
memory

StO is register 8, St1 is register 9
StO0 holds 5

St1 holds 0x4810CABO
0x4810CABO holds 12

IF/ID

ID/EX

Instruction

Read
register 1

Read

register 2
Registers

Write
register
Write
data

Read
data 1

Read
data 2

| oY I
| Memory !
EX/MEM MEM/WB
> >
> | Address Bl
Data
memory

Write

" | data

WB for sw St0, 4(St1)

IF/ID ID/EX
Add >
4 — A
Shift
left 2
c
Address ‘% Read
=] register 1 Read
g data 1
= Read
Instruction register %e isters
memory)] Read
Write data 2
register

StO is register 8, St1 is register 9

St0 holds 5

St1 holds 0x4810CABO
0x4810CABO holds 12

Write
data

g Add
result

sw
Write-back

MEM/WB

EX/MEM

- ——

> Read

> @ Address data
Data
memory

o | Write

o 7| data

Pipeline Stages

Should we force every instruction to go through all 5 stages? Can we break it
up, with R-type taking 4 cycles instead of 5?

Reason (Choose BEST answer)

A Yes Decreasing R-type to 4 cycles improves instruction
throughput
B Yes Decreasing R-type to 4 cycles improves instruction
latency
No Decreasing R-type to 4 cycles causes hazards
D No Decreasing R-type to 4 cycles causes hazards and

doesn’t impact throughput

E No Decreasing R-type to 4 cycles causes hazards and
doesn’t impact latency

Mixed Instructions in the Pipeline

N | oo
Q
5[] [2
5
3 | =
o
Z 3

State of pipeline in a given cycle

add $14, $5, $6

Iw $13, 24 ($1)

add $12, $3, $4

sub $11, $2, $3

| Iw $10, 20($1) |

Instruction fetch Instruction decode | Execution | Memory | Write-back |
IF/ID ID/EX EX/MEM MEM/WB
L :
4 Adg Add
Shift result
left 2
L0
M
u PC » Address - Read Read
ister 1
1X % register data 1 >
E Read Zero S
: 2 " | register 2
Inni:;zt:on —4) Registers peag ALY aw Address Read
¥ | write data 2 > OM result data

register u Data

Write x memory

data 4 1

Write
data
16\ Sign- 32
X extend —

elined

Control

Add

IF/ID

ID/EX

»| Address

Instruction
memory

Instruction

RegWrite
|

| Read

" | register 1

Shift
left 2

gAdd

EX/MEM

A
ﬂ

Read
data 1

Read

Y

register 2

Registers

Write Read

y

register data 2

—»| Write
data

Instruction

(15-0) 16 [gjgn. | 32

V| extend

Instruction
(20-16)

Branch
I_D—

MemWrite
1

PCSrc

Address

Data
memory

Write

‘/c’

Instruction

(15-11)

0
M

ALU
control

ALUOp

data

Read
data

MEM/WB

I
MemRead

MemtoReg

Ox ez

u
X

1
—

RegDst

How do we control our pipelined CPU?

. We need to add new control signals.
. We need to forward the control values to the correct stage.

. We don’t need to do anything special; it will work the way it
1S.

Pipeline Control

* |F Stage: read Instr Memory (always) and write PC (on System
Clock)

* |D Stage: no optional control signals to set

 EX, MEM, and WB stages have control signals

— The pipeline registers will need to store the control signals

Pipelined Control

Control signals derived from instruction

e

WB

1]
| []

IF/ID ID/EX EX/MEM MEM/WB

Pipelined Control: add S$tO, St1, St2

PCSrc
ID/EX
T|we LEX/MEM
| WB
Contro M | MEM/WB
IF/ID | X M e
Add > > > \
4 Add Adﬁ
Shift resu Branch
2 left 2 L1
‘;‘ ALUSrc
fed —

0 = g hold
3 g . Stl holds 5
u PC » Address 5 Read Read E P

5 register 1 2 £ h I d
Lalq E data 1 o] t2 O S 6
‘g’ Read — =
Instruction = register 2 R
— i _ ead | |
memory wiite Reglsterstead .- 6 Address data [T > DM
register ata 2 M Dat: u
Write g oy X
i memor
data o1 v 1
Write
data
Instruction
[15-0] 16 sign- | 32 ‘\5 _
extend \ y control MemRead
Instruction
[20-16]
> 0
M -
Instruction u
[15-11] e
— — RegDst — [

PCSrc

Add
4
Address
Instruction
memory

ID/EX
/‘ " we LEX/MEM
| wB
Contro M | MEM/WB
EX M WB [—
IF/ID
Branch
2
2
g — |
« e
= g
s Read S o
'-;9_, register 1 Read - £
E] data 1 = E
3 Read b =
£ register 2 Read
_" B o —
Write Registers Reag > Address data [[| a
™! register data 2 "
g Data u
Write memor X
data ¢ y 1
Write
data
Instruction
115-0] 16 [sign. | 32
extend N MemRead
Instruction U
[20-16]
Instruction >
[15-11] 1’(
E— — RegDst e L

EX Stage

MEM Stage

WB Stage

RegDst

ALUOPp1

ALUOpPO

Brch

MemRead

MemWrite

RegWrite

Mem toReg

1

0

1w

SW

beg

X|[X]|o

|0 |O|—

OO |O

- 1O O

O|Oo|—~|0O

O|—~|O|O

1
0
0

1
X
X

Questions on Pipeline Control?

Dependencies & Forwarding

Time (in clock cycles) -

-

Value of CC1 CcC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9
register $2: 10 10 10 10 10/-20 -20 -20 -20 —20

Program
execution
order

(in instructions) u B M

sub $2, $1, $3 IM |F?eg - DM _,e_g:

and $12, $2, $5 IM [-R¢ /~|i>rv| eg
— — — \

or $13, $6, $2 M oRed | [}
L || L~
1= [|
add $14, $2,$2 IM [Reg —Ee_gJ
1
v Sw$15,100(%2) IM DM Hng

We can best solve these data hazards

. By stalling.
By forwarding.

By combining forwards and
stalls.

. By doing something else.

Time (in clock cycles) >
Value of CC1 CcC2 CC3 CC4 CC5 CCé6 CC7 CcCs8 CcCo9
register $2: 10 10 10 10 10/-20 -20 -20 -20 -20

Program
execution
order

(in instructions) M =
-
sub 52, $1, $3 @—H—ﬁﬁ_@: :D-
[(e
or $13, $6, $2 @—

L
Reg}

and $12, $2, $5

s
L

add $14, $2,$2

3 B \F

v sw$15,100($2)

sub $2, $1,%$3
and $12,%2,$5
or $13,%6,%2
add $14,%$2,9%2
sw $15,100(%2)

Data Hazards in ALU Instructions

e Consider this sequence:

sub $2, $1,9%3
and $12,%2,9%5
or $13,%6,%2
add $14,%2,9%2
sw $15,100(%$2)

* We can resolve hazards with forwarding

— How do we detect when to forward?

Forwarding

Data path

e Connect the outputs of EX and MEM stages to both ALU inputs
controlled by multiplexers

Control path

* Passrs, rt, and rd register numbers through the pipeline
registers

* Add a forwarding unit to control the multiplexers

— Depends on RegWrite and rs/rt/rd from various stages

Detecting the Need to Forward

MMMMMMMMMMM

register 1

register 2

Write
register
Write

e Data hazards when
la. EX/MEM.RegisterRd = ID/EX.RegisterRs
1b. EX/MEM.RegisterRd = ID/EX.RegisterRt
2a. MEM/WB.RegisterRd = ID/EX.RegisterRs
2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

Detecting the Need to Forward

* But only if forwarding instruction will write to a register!
— EX/MEM.RegWrite, MEM/WB.RegWrite

* And only if Rd for that instruction is not Szero

— EX/MEM.RegisterRd # O,
MEM/WB.RegisterRd # 0

Forwarding Paths
sub $t3, St0, St6 ME n?dd StO, Stl’m%hz/ws

IDEX St1 holds 2
St2 holds 3
— St6 holds 1
:: g StO is register 8,
Registers ForwardA >ALU Stlis 9, etc
] Data o
T ‘ memory

ForwardB

Rs
Rt
Rt
Rd

EX/MEM.RegisterRd
-

"j
l Forwarding MEM/WB.RegisterRd

>\ unit >

vy
(xe=)

b. With forwarding

If EX/MEM.RegisterRd = MEM/WB.RegisterRd = rs (i.e., both

pipeline registers contain a value that wil
register that’s about to be used for the A
be used by the ALU?

add St1, StO, St2
sub St1, St1, St6
add St8, St1, St7

A. The one in EX/MEM
B. The one in MEM/WB

C. Either works since
both write to rs

D. The rs value from the
register file

b

ID/EX

EX/MEM

Registers

be written to the same
| U), which value should

MEM/WB

Data N N
memory

EX/MEM.RegisterRd

MEM/WB.RegisterRd

(i
> U
)
-
{ ForwardA
ALU—
> U
)
[2 2
ForwardB
> U >
X
[Forwarding)_.‘_
:'\ unit I

b. With forwarding

Instruction
memory

Datapath with Forwarding

IF/ID

ID/EX

— Control |_'->

WB

M

.

EX

| Instruction

Registers

\

EX/MEM

»\WB MEM/WB

> M = \WBI—
ALUF— - >

Data
memory

IF/ID.RegisterRd

IF/ID.RegisterRs Rs
IF/ID.RegisterRt | [Rt
IF/ID.RegisterRt | [Rt]

| [Rd

Y

EX/MEM.RegisterRd

-
o

MEM/WB.RegisterRd
4

xc=

Reading

* Next lecture: Pipelined Datapath
— Section 5.7

	Slide 1: CSCI 210: Computer Architecture Lecture 29: Pipelining
	Slide 3: CS History: Berkeley RISC
	Slide 4: Pipelined Datapath
	Slide 5: IF for sw $t0, 4($t1)
	Slide 6: ID for sw $t0, 4($t1)
	Slide 7: EX for sw $t0, 4($t1)
	Slide 8: MEM for sw $t0, 4($t1)
	Slide 9: WB for sw $t0, 4($t1)
	Slide 10
	Slide 11: Mixed Instructions in the Pipeline
	Slide 12: State of pipeline in a given cycle
	Slide 13: Pipelined Control
	Slide 14: How do we control our pipelined CPU?
	Slide 15: Pipeline Control
	Slide 16: Pipelined Control
	Slide 17: Pipelined Control: add $t0, $t1, $t2
	Slide 18
	Slide 19: Questions on Pipeline Control?
	Slide 20: Dependencies & Forwarding
	Slide 21: We can best solve these data hazards
	Slide 22: Data Hazards in ALU Instructions
	Slide 23: Forwarding
	Slide 24: Detecting the Need to Forward
	Slide 25: Detecting the Need to Forward
	Slide 26: Forwarding Paths
	Slide 27: If EX/MEM.RegisterRd = MEM/WB.RegisterRd = rs (i.e., both pipeline registers contain a value that will be written to the same register that’s about to be used for the ALU), which value should be used by the ALU?
	Slide 28: Datapath with Forwarding
	Slide 29: Reading

