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CS History: Berkeley RISC

Developed by David Patterson at UC Berkeley between 1980 and 1984

Patterson took a sabbatical to improve DEC’s Complex Instruction Set, and
instead decided the whole system was bad

A 1978 Andrew Tannenbaum paper had shown a 10,000 line complex
program could be implemented using a simplified ISA with an 8-bit fixed
opcode

— And that 81% of constants were 0, 1 or 2!
— IBM internally discovered similar results

First RISC chip came out in 1981
RISC V is currently in active development as an open-source ISA
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WB for sw St0, 4(St1)
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Pipeline Stages

Should we force every instruction to go through all 5 stages? Can we break it
up, with R-type taking 4 cycles instead of 5?

Reason (Choose BEST answer)

A Yes Decreasing R-type to 4 cycles improves instruction
throughput
B Yes Decreasing R-type to 4 cycles improves instruction
latency
No Decreasing R-type to 4 cycles causes hazards
D No Decreasing R-type to 4 cycles causes hazards and

doesn’t impact throughput

E No Decreasing R-type to 4 cycles causes hazards and
doesn’t impact latency



Mixed Instructions in the Pipeline
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State of pipeline in a given cycle
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How do we control our pipelined CPU?

. We need to add new control signals.
. We need to forward the control values to the correct stage.

. We don’t need to do anything special; it will work the way it
1S.



Pipeline Control

* |F Stage: read Instr Memory (always) and write PC (on System
Clock)

* |D Stage: no optional control signals to set

 EX, MEM, and WB stages have control signals

— The pipeline registers will need to store the control signals



Pipelined Control
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Pipelined Control: add S$tO, St1, St2
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Questions on Pipeline Control?



Dependencies & Forwarding
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We can best solve these data hazards

. By stalling.
By forwarding.

By combining forwards and
stalls.

. By doing something else.
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Data Hazards in ALU Instructions

e Consider this sequence:

sub $2, $1,9%3
and $12,%2,9%5
or $13,%6,%2
add $14,%2,9%2
sw $15,100(%$2)

* We can resolve hazards with forwarding

— How do we detect when to forward?



Forwarding

Data path

e Connect the outputs of EX and MEM stages to both ALU inputs
controlled by multiplexers

Control path

* Passrs, rt, and rd register numbers through the pipeline
registers

* Add a forwarding unit to control the multiplexers

— Depends on RegWrite and rs/rt/rd from various stages



Detecting the Need to Forward
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Detecting the Need to Forward

* But only if forwarding instruction will write to a register!
— EX/MEM.RegWrite, MEM/WB.RegWrite

* And only if Rd for that instruction is not Szero

— EX/MEM.RegisterRd # O,
MEM/WB.RegisterRd # 0
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If EX/MEM.RegisterRd = MEM/WB.RegisterRd = rs (i.e., both
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Reading

* Next lecture: Pipelined Datapath
— Section 5.7
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